Methods in Philosophy, Politics and Economics: Individual and Group Decision Making

Eric Pacuit University of Maryland

Maximal Element

Suppose that $R \subseteq X \times X$ is a relation on X and $Y \subseteq X$.

 $x \in Y$ is a **maximal** element of *Y* provided that there is no $z \in Y$ such that $z \neq x, z R x$, and not-x R z.

 $x \in Y$ is **maximal** if there is no other element of *Y* that is *strictly R*-related to *x*.

Suppose that $X = \{a, b, c, d\}$. Consider the following relations on *X*:

• $R = \{(a, b), (b, c), (a, c), (d, a), (d, b), (d, c)\}.$ The set of maximal elements of $\{a, b, c\}$ is $\{a\}$

Suppose that $X = \{a, b, c, d\}$. Consider the following relations on *X*:

- *R* = {(*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*}
- *R* = {(*a*, *b*), (*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*, *b*}

Suppose that $X = \{a, b, c, d\}$. Consider the following relations on *X*:

- *R* = {(*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*}
- *R* = {(*a*, *b*), (*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*, *b*}
- *R* = {((*a*, *c*), (*b*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}.
 The set of maximal elements of {*a*, *b*, *c*} is {*a*, *b*}

Suppose that $X = \{a, b, c, d\}$. Consider the following relations on *X*:

- *R* = {(*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*}
- *R* = {(*a*, *b*), (*a*, *b*), (*b*, *c*), (*a*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*, *b*}
- *R* = {((*a*, *c*), (*b*, *c*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is {*a*, *b*}
- *R* = {((*a*, *b*), (*b*, *c*), (*c*, *a*), (*d*, *a*), (*d*, *b*), (*d*, *c*)}. The set of maximal elements of {*a*, *b*, *c*} is Ø

Suppose that *X* is a set and that (P, I) is a rational preference on *X* for some decision maker.

The set of maximal elements of a set $Y \subseteq X$ for the decision maker is the set of maximal elements with respect to the strict preference *P*.

Suppose that *X* is a set and that (P, I) is a rational preference on *X* for some decision maker.

The set of maximal elements of a set $Y \subseteq X$ for the decision maker is the set of maximal elements with respect to the strict preference *P*.

That is, $y \in Y$ is maximal for a decision maker with rational preference (P, I) if there is no other element of Y that is strictly preferred to *y*.

Rational Choice

Suppose that *X* is set and $A \subseteq X$, and that (P, I) is a rational preference on *X* representing a decision maker's preferences.

 $x \in A$ is a **rational choice** for the decision maker if x is a maximal element of A with respect to (P, I).

Suppose that (P, I) is a rational preference on *X*.

Suppose that (P, I) is a rational preference on *X*.

For any $A \subseteq X$, there is always at least one maximal element of A (so there is always at least one rational choice with respect to (P, I).

Suppose that (P, I) is a rational preference on *X*.

For any $A \subseteq X$, there is always at least one maximal element of A (so there is always at least one rational choice with respect to (P, I).

Property α : Suppose that $A \subseteq B \subseteq X$. If $x \in B$ is maximal in B for (P, I) and $x \in A$, then x is maximal in A for (P, I)

Suppose that (P, I) is a rational preference on *X*.

For any $A \subseteq X$, there is always at least one maximal element of A (so there is always at least one rational choice with respect to (P, I).

Property α : Suppose that $A \subseteq B \subseteq X$. If $x \in B$ is maximal in B for (P, I) and $x \in A$, then x is maximal in A for (P, I)

Property β : Suppose that $A \subseteq X$ and $B \subseteq X$ and that x, y are in both A and B. If x and y are both maximal in A for (P, I) and x is maximal in B for (P, I), then y is maximal B for (P, I).